Kinetics of Particles with Short-range Interactions

Particles in soft-matter systems (such as colloids) tend to have very short-range interactions, so traditional theories, that assume the energy landscape is smooth enough, will struggle to capture their dynamics. We propose a new framework to look at such particles, based on taking the limit as the range of the interaction goes to zero. In this limit, the energy landscape is a set of geometrical manifolds plus a single control parameter, while the dynamics on top of the manifolds are given by a hierarchy of Fokker-Planck equations coupled by “sticky” boundary conditions. We show how to compute dynamical quantities such as transition rates between clusters of hard spheres, and then show this agrees quantitatively with experiments. The framework may also be used to more efficiently ask questions about programmable self-assembly. 

Armitage 121

Date & Time
February 9, 2018
11:15 am-12:15 pm

Event posted in Approved Campus Activity.